
Nonlocal -symmetric potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 8479

(http://iopscience.iop.org/1751-8121/40/29/020)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/29
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 8479–8486 doi:10.1088/1751-8113/40/29/020

Nonlocal PT -symmetric potentials

B Roy and R Roychoudhury

Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta 700 035, India

E-mail: barnana@isical.ac.in and raj@isical.ac.in

Received 29 January 2007, in final form 30 May 2007
Published 3 July 2007
Online at stacks.iop.org/JPhysA/40/8479

Abstract
The factorization approach for complex Hamiltonians has been used to obtain
the exactly solvable nonlocal variant of PT -symmetric local potentials. The
formalism is used to obtain exact eigenvalues and eigenfunctions of the nonlocal
PT -symmetric Scarf potential.

PACS number: 03.65.−w

1. Introduction

Recently there has been a growing interest in the study of non-Hermitian Hamiltonians which
appear in different branches of physics [1]. The main reason for this is that the energy
spectrum of a number of complex potentials turned out to be real (at least partly). Bender and
his collaborators [2] attributed this unusual behaviour of the energy spectrum to the so-called
PT symmetry, i.e. the invariance of the Hamiltonian with respect to the simultaneous space P
and time T reflection. However, it is now known that for the real spectrum of a PT -symmetric
Hamiltonian the energy eigenfunctions have to be necessarily simultaneous eigenstates of the
combined operator PT [2]. Otherwise, PT is spontaneously broken and the eigenvalues are
arranged in complex conjugate pairs. In recent times, it has been stressed [3] that a quantum
Hamiltonian H having a complete set of eigenvectors will have a real spectrum if and only if
there exists a positive definite operator η such that

H † = ηHη−1, (1)

i.e. H is η-pseudo-Hermitian. The other equivalent conditions are discussed in [3].
On the other hand, complex nonlocal potentials [5–9], in particular the PT -symmetric

ones, have attracted a lot of interest in recent years. The scattering by PT -symmetric nonlocal
potential was studied in [10]. In [11, 15], PT -symmetric point (nonlocal) interactions were
used to clarify certain properties of PT -symmetric quantum-mechanical Hamiltonians. The
symmetries and general characteristics of PT symmetrical point interactions were discussed
in [12]. Eigenvalues of PT symmetrical Hamiltonians were calculated in [13]. Integrability
and PT symmetry of many-body systems with pseudo-Hermitian point interactions were
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studied in [14]. The application of the ideas of supersymmetric quantum mechanics [16] in
constructing non-Hermitian PT -symmetric Hamiltonians has been considered in [17] and a
formulation of PT -symmetric supersymmetry has been outlined in [18]. In this paper, our
aim is to extend the idea of nonlocal potentials from complex point interactions to other types
of interactions. To this end we shall use the factorization approach, which was extended to the
case of complex potentials in [19] to obtain exact solutions of a nonlocal deformation of exactly
solvable complex PT invariant local potentials. We shall find the energy eigenfunctions and
eigenvalues and shall show that in some cases the partner Hamiltonians have normalizable
ground states while in other cases they have not. The organization of the paper is as follows.
In Section 2, we give the details of factorization approach to treat the nonlocal deformation
of PT -symmetric potentials. Application of the formalism to a specific potential is given in
section 3 and section 4 is devoted to a conclusion.

2. Complex factorization approach

The time-independent Schrödinger equation in the position representation is given by

H̃ψ(x) = Eψ(x), (2)

where the Hamiltonian H̃ is given by

H̃ψ(x) = − h̄2

2m

d2

dx2
ψ(x) + V (x)ψ(x) +

∫ ∞

−∞
dy v(x, y)ψ(y) = Eψ(x), (3)

with V (x) and v(x, y) being the complex local and nonlocal potentials, respectively.
To apply the factorization technique we would assume that H̃ in equation (3) can be

generalized to

H̃ =
(

H̃+ 0
0 H̃−

)
, (4)

where H̃+ = ÂB̂ and H̃− = B̂Â are isospectral partners and Â, B̂ are linear first-order
differential operators. Details of Â, B̂ will be discussed later on. Also let V± and v± be,
respectively, the local and nonlocal potentials for H± and E± be the corresponding energies.

Writing

〈x|V±(x)|ψ±〉 = V±(x)ψ±(x),

〈x|v±(x, y)|ψ±〉 =
∫ ∞

−∞
dy v±(x, y)ψ±(y), (5)

the Schrödinger equations corresponding to H± can be written as

h̄2

2m

d2

dx2
ψ±(x) + 〈x|V±(x)|ψ±〉 + 〈x|v±(x, y)|ψ±〉 = E±ψ±(x). (6)

Let us write the potentials in an operator form as

V̂± =
∫ ∞

−∞
dx|x〉V±(x)〈x|, v̂± =

∫ ∞

−∞
dx

∫ ∞

−∞
dy|x〉v±(x, y)〈y|. (7)

The partner Hamiltonians H̃+ and H̃− can be factorized, respectively, as ÂB̂ and B̂Â,
where

B̂ = − ip̂√
2m

+ Ŵ + ŵ Â = ip̂√
2m

+ Ŵ + ŵ (8)
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and p̂ = −ih̄ d
dx

. Ŵ and ŵ are defined as in equation (7), namely,

Ŵ =
∫ ∞

−∞
dx|x〉W(x)〈x|, ŵ =

∫ ∞

−∞
dx

∫ ∞

−∞
dy|x〉w(x, y)〈y|. (9)

The potentials V± and v± are written in terms of the factorization potentials W(x) and
w(x, y) (superpotentials in the supersymmetric quantum mechanics) as

V±(x) = [W(x)]2 ± h̄√
2m

dW(x)

dx
,

v±(x, y) =
∫ ∞

−∞
duw(x, u)w(u, y) + [W(x) + W(y)]w(x, y) (10)

± h̄√
2m

[
∂w(x, y)

∂x
+

∂w(x, y)

∂y

]
.

It is to be mentioned here [20] that in models with local potentials, there is a one-to-one
relationship between the ground state and the factorization potential W(x), but it is not so with
nonlocal potentials. In nonlocal models, given the factorization potentials W(x) and w(x, y),
the zero-energy ground state ψ0(x) of Ĥ− say is obtained from the integro-differential equation

h̄√
2m

dψ0(x)

dx
+ W(x)ψ0(x) +

∫ ∞

−∞
dy w(x, y)ψ0(y) = 0. (11)

We shall now construct a class of exactly solvable models with both complex (PT )

invariant local and nonlocal potentials starting from any exactly solvable local model with the
factorization potential W0(x) and to this end we choose

W(x) = (1 − c)W0(x), w(x, y) = C1h̄√
2m

∂

∂x
δ(x − y), (12)

where C1 is a parameter of nonlocality and c is a constant.
Substituting W(x) and w(x, y) from equation (12) into equation (10), we obtain

V±(x) = (1 − c)2[W0(x)]2 ± (1 − c)
h̄√
2m

dW0(x)

dx
,

∫ ∞

−∞
dy v±(x, y)ψ±(y) = h̄2

2m
C2

1
d2ψ±(x)

dx2
+ 2

h̄√
2m

C1(1 − c)W0(x)
dψ±(x)

dx

± (1 − c)
h̄√
2m

C1
dW0(x)

dx
ψ±(x). (13)

Thus, the contribution of nonlocal potential to the Hamiltonian is given by

v̂± = −C2
1

p̂2

2m
+

2i(1 − c)C1√
2m

W0(x)p̂ ± h̄(1 − c)C1√
2m

W ′
0(x). (14)

Consequently, the eigenvalue equations for the Hamiltonians H̃± are written as

H̃±ψ± = E±ψ±, (15)

where

H̃± = − h̄2

2m

(
1 − C2

1

) d2

dx2
+

2h̄C1(1 − c)√
2m

W0(x)
d

dx

+
h̄√
2m

(1 − c)(C1 ± 1)
dW0(x)

dx
+ (1 − c)2W 2

0 (x). (16)

To solve the eigenvalue problem in equation (15), our strategy would be to find a similarity
transformation mapping the Hamiltonians in equation (16) into a standard form.
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To this end, we make the transformation

ψ±(x) = e− 1
2

∫
f (x) dxφ±(x) = ηφ±(x), (17)

where

η = e− 1
2

∫
f (x) dx, f (x) = −2

√
2mC1(1 − c)

h̄
(
1 − C2

1

) W0(x), (18)

so that the transformed Hamiltonians H̄± = η−1H̃±η are given by

H̄±φ±(x) = − h̄2

2m

(
1 − C2

1

)d2φ±(x)

dx2
+

(1 − c)2(
1 − C2

1

)W 2
0 (x)φ±(x)

± h̄√
2m

(1 − c)W ′
0(x)φ±(x) = E+φ±(x). (19)

It is to be noted that the factorization can again be applied to H̄±. In fact

H̄+ = ĈD̂, H̄− = D̂Ĉ, (20)

where

Ĉ = h̄√
2m

(1 + C1)
d

dx
+

(1 − c)

(1 − C1)
W0(x),

(21)
D̂ = − h̄√

2m
(1 − C1)

d

dx
+

(1 − c)

(1 + C1)
W0(x).

The factorization (20) indicates that H̄± are isospectral depending on the vanishing of the
operator D and/or normalizability of the eigenfunctions.

For the special case C2
1 = c, the Hamiltonians H̄± can be written in terms of the local

Hamiltonians H̄±,local as

H̄± = (1 − c)H̄±,local. (22)

From the above equation it follows that

φ± = χ±, E± = (1 − c)E±,local, (23)

where χ± are the eigenfunctions of the local Hamiltonian.
It may be noted that in the case of PT -symmetric systems, neither the standard definition

of the inner product in Hilbert space H nor the straightforward generalization would work,
because the norm becomes negative for some of the states. For details about the positive
definite scalar products in PT -symmetric systems, we refer the reader to [3, 23, 25].

3. Example

Here we shall apply the formalism of section 2 to obtain exact solutions of a nonlocal variant
of the PT -symmetric Scarf potential [21]. In this case, the factorization potential is taken as

W0(x) = λ tanh x + iµ sech x. (24)

Then from equation (14), v̂± are found to be

v̂± = −C2
1

p̂2

2m
+

2i(1 − c)C1√
2m

(λ tanh x + iµ sech x)p̂

± h̄(1 − c)C1√
2m

(λ sech 2x − iµ sech x tanh x), (25)
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and from equation (16), H̃± are given by

H̃± = − h̄2

2m

(
1 − C2

1

) d2

dx2
+

2h̄C1(1 − c)√
2m

(λ tanh x + iµ sech x)
d

dx

+
h̄(1 − c)(C1 ± 1)√

2m
(λ sech 2x − iµ sech x tanh x)

+ (1 − c)2(λ tanh x + iµ sech x)2. (26)

With f (x) = − 2
√

2mC1(1−c)

h̄

(
1−C2

1

) (λ tanh x + iµ sech x), the transformed Hamiltonians H̄± are

given by

H̄± = − h̄2

2m

(
1 − C2

1

) d2

dx2
+

(1 − c2)(
1 − C2

1

) (λ tanh x + iµ sech x)2

± h̄√
2m

(1 − c)(λ sech 2x − iµ sech x tanh x) . (27)

These two Hamiltonians admit the factorizations

H̄± =
[
± h̄√

2m
(1 ± C1)

d

dx
+

(1 − c)

(1 ∓ C1)
(λ tanh x + iµ sech x)

]

×
[ (

∓ h̄√
2m

)
(1 ∓ C1)

d

dx
+

(1 − c)

(1 ± C1)
(λ tanh x + iµ sech x)

]
. (28)

With C2
1 = c, the eigenvalue equations for H̄± can be written as

H̄±φ±(x) = (1 − c)

[
− h̄2

2m

d2φ±(x)

dx2
+ (λ tanh x + iµ sech x)2φ±(x)

± h̄√
2m

(λ sech 2x − iµ sech x tanh x)φ±(x)

]
= E±φ±(x). (29)

The eigenvalues and eigenfunctions can be written from equation (29) using the results
of the corresponding local model [21]. In the following we shall consider the case with an
unbroken PT symmetry, i.e. the energies are real. If the potential is written as

V (x) = V1 sech 2x + iV2 sech x tanh x,

this will be true if |V2| � V1 + 1
4 , V1, V2 being given in the following equations. Three cases

will arise [21]:

Case 1. Positive square roots taken in both t and s (given in the following equations). In this
case, the eigenvalues are given by

E±,n+ = (1 − c)

[
λ2 − h̄2

2m

{
n+ +

1

2
− 1

2
(t + s)

}2
]

, (30)

where

n+ = 0, 1, 2 · · · <
s + t − 1

2

V1 = 2m

h̄
(λ2 + µ2) ∓

√
2m

h̄
λ

V2 = ±
√

2m

h̄
µ − 2m

h̄2 2λµ
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t =
√

1

4
+ V1 − V2

s =
√

1

4
+ V1 + V2 (31)

and the eigenfunctions corresponding to these real eigenvalues are

ψ±,n+(x) ≈ N+
n ( sech x)

(1−√
c)(s+t)−(1±√

c)

2

(32)
exp

[ i

2
(1 +

√
c)(t − s) tan−1(sinh x)

]
P (−t,−s)

n (i sinh x),

where P (−t,−s)
n denotes the Jacobi polynomial and N+

n is the normalization constant.
It is to be noted that the nonlocality of the original Hamiltonian is reflected in the spectrum,

equation (30) (as well as in the eigenfunctions, equation (32)), through c which is related to
the nonlocal parameter C1.

Case 2. V2 > 0, positive square root in s and negative square root in t.
In this case

E±,n− = (1 − c)

[
λ2 − h̄2

2m

{
n− +

1

2
− 1

2
(s − t)

}2
]

, (33)

where

n− = 0, 1, 2 · · · <
s − t − 1

2

V1 = 2m

h̄
(λ2 + µ2) ∓

√
2m

h̄
λ

V2 = ±
√

2m

h̄
µ − 2m

h̄2 2λµ (34)

t = −
√

1

4
+ V1 − V2

s =
√

1

4
+ V1 + V2

and

ψ±,n−(x) ≈ N−
n ( sech x)

(1−√
c)(s−t)−(1±√

c)

2

(35)
exp

[
− i

2
(1 +

√
c)(t + s) tan−1(sinh x)

]
P (−t,s)

n (isinh x).

Case 3. V2 < 0, positive square root taken in t and negative square root in s.
In this case

E±,n− = (1 − c)

[
λ2 − h̄2

2m

{
n− +

1

2
− 1

2
(t − s)

}2
]

, (36)

where

n− = 0, 1, 2 · · · <
t − s − 1

2

V1 = 2m

h̄
(λ2 + µ2) ∓

√
2m

h̄
λ

V2 = ±
√

2m

h̄
µ − 2m

h̄2 2λµ
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t =
√

1

4
+ V1 − V2

s = −
√

1

4
+ V1 + V2 (37)

and

ψ±,n−(x) ≈ N−
n ( sech x)

(1−√
c)(t−s)−(1±√

c)

2 exp
[ i

2
(1 +

√
c)(t + s) tan−1(sinh x)

]
×P (−t,s)

n (i sinh x). (38)

Now for case 1 and case 3, it is found that the ground state is shared by both the partner
Hamiltonians only if λ > h̄√

2m(1−√
c)

> 0. For case 2, the ground state will not be shared by

the partner Hamiltonians irrespective of the value λ takes.

4. Discussions

The complex factorization approach of quantum mechanics is formally extended in this paper
to complex (PT invariant) nonlocal Hamiltonians. The formalism is applied to obtain exact
eigenvalues and eigenfunctions of nonlocal deformation of the PT -invariant Scarf potential.
It is seen that in some cases the ground state is shared by partner Hamiltonians for some
particular values of the parameters involved and in some other cases this does not appear. This
is a typical feature of nonlocality. It should be mentioned that, by similarity transformation
equation (17), the nonlocal Hamiltonian is related to local Hamiltonian thereby making it
possible to talk about the normalization of wavefunctions of the original nonlocal Hamiltonian
which otherwise would not be possible because as far as we know, the inner product for PT -
symmetric nonlocal systems is yet to be defined. Here it must be admitted that some theoretical
questions for nonlocal potentials are yet to be resolved. We hope to take up this problem in
near future. However, the present framework provides a way to link, albeit for special value
of the nonlocal parameter, the nonlocal potential to a corresponding local potential. Finally,
we feel it would be interesting to study other interactions, especially the shape invariant ones
[26] within the present framework.
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